

PRIAM
Printable functionalities for truly
autonomous, intelligent lighting and

autonomous, intelligent lighting a signalling systems

Grant Agreement number: 248752 Start date of Project: 01.01.2010

Duration 36 months

Progetto di ricerca: PRIAM

PRINTABLE FUNCTIONALITIES FOR TRULY AUTONOMUS, INTELLIGENT LIGHTING

AND SIGNALLING SYSTEMS

ICT – Information and Communication Technologies

OBIETTIVI E COERENZA CON IL BANDO

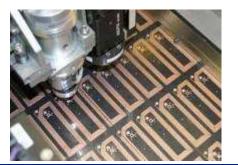
- •The general goal of PRIAM is associated to emerging printed electronics and converging technologies of production such as Roll-to-roll. Particularly the goal is to address such needs as:
- •Low cost disposable electronics (printed organic sensors, smart packaging, batteries and RFID tags)
- •Large area low cost electronics (signage displays, printed photovoltaic panels, smart shelving, smart textiles, printed memories)
- •Flexible opto-electronics (foldable, rollable displays, e-papers, e-books)

PRIAM

Printable functionalities for truly autonomous, intelligent lighting and signalling systems

OBJECTIVE 1

Autonomous integrated systems


- Light-emitting autonomous road signs
- Autonomous car signals and taillights

OBJECTIVE 2

Converging R2R approaches for a proof-of-concept

IL CONSORZIO

1(coordinator) **CRF IND**

Project coordination. Ink-jet and screen printing processes. Final assessment of devices demonstrators.

Exploitation into other area of transportation (Magneti Marelli, FGA, IVECO, CNH) of the developed lighting modules.

2 CEA RES

Lamination for flexible batteries. Encapsulation. Improvement of lamination approach within converging technologies.

3 VTT RES

Roll-to-roll line. Substrates investigation and analysis. Packaging. **Proof-of-concept production line** and upgrading of existing production line

4 microTEC SME

Process development for polymer microstructuring (RMPD® and 3D-CSP) technologies. **Supply of packaging and assembly product solutions**. **Business and demonstrator development** with expertise in integration using heterogeneous technologies

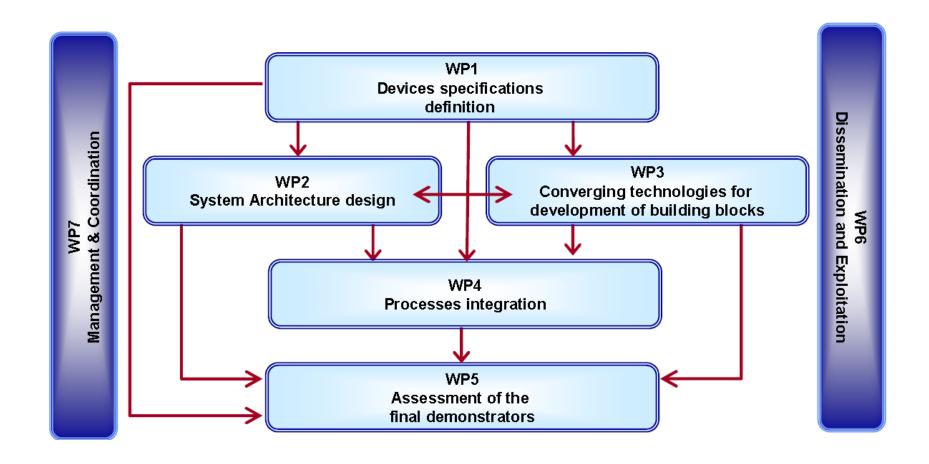
5 CRP IND

Production line for COB, COF, COG matrices. Attaching of rigid components onto plastic foils. Cooperation with the taillight division of Automotive Lighting for the automotive application. Final assessment of devices demonstrators. **LED** systems (taillight) pre-productions.

6 AXMC SME

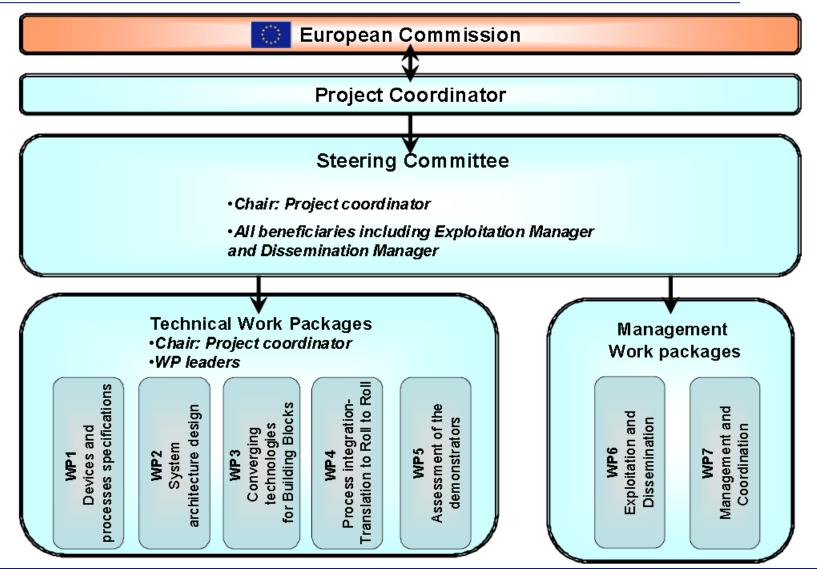
Ink-jet processes and materials. Development of inks for metal bonding and electrical circuitry printing.

Improvement of ink-jet printing within converging technologies

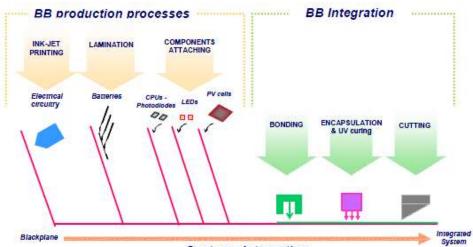

7 SOLARI SME

End-user. Marketing and commercialization. Final assessment of road sign devices. Installation of the demonstrators.

Road-sign and info panel production plans.



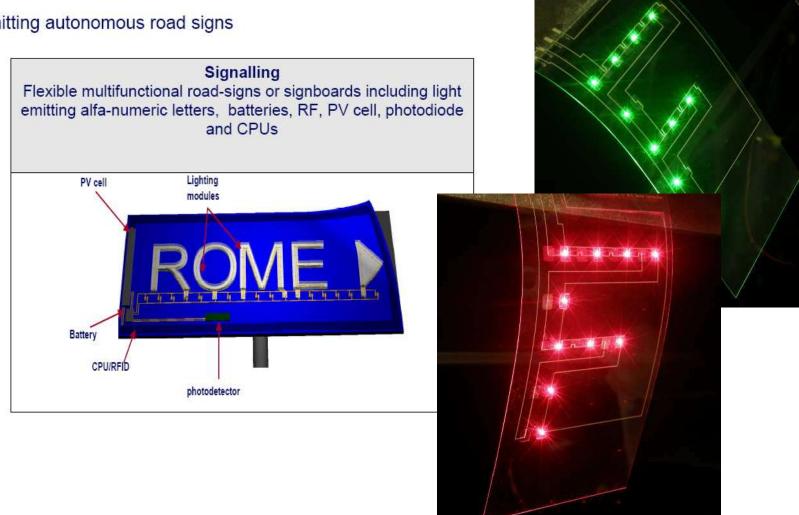
ORGANIZZAZIONE TECNICA DEL PROGETTO



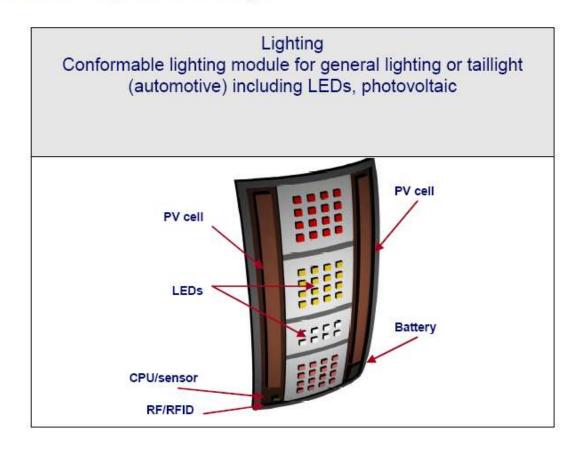
LE TECNOLOGIE

Objectives

- the design of advanced BBs to prepare high efficient and low-cost assembly stage the adaptation of all processes such printing (ink-jet and alternatively screen), lamination, attaching processes for BBs fabrication.
- the development of the methodologies for process integration between subassemblies (sub-assemblies on the foil will be developed with tight co-operation within previous WPs) and backplane.
- the proposal of an homogeneous process based foil lamination/interconnection to fulfil the future
- device requirements and open new applications


Systems Integration

DIMOSTRATORI


Light-emitting autonomous road signs

DIMOSTRATORI

B. Autonomous car signals and tail lights

DIMOSTRATORI

- ✓ Reduced volume
- ✓ Increased power safety
- Improved intelligence and communication
- Validation of integration of several functionalities on single device for automotive applications

TRASFERIMENTO TECNOLOGICO

3 main BBs were identified: electronics, lighting, energy scavenging

Electronics	Lighting	Energy scavenging
Whole system on single face	Whole system on single face	Whole system on single face
Substrates: PI for electronics sheet	Substrates: PET-PC sheets	Substrates: PET-PC sheets
Photodiode sensor: SMD solution to allocate in front of device	Chip dies: selected top-top LED (naked die)	Battery cells: Li-ions solution PV Cells: amorphous solution (flexible)
Distance sensor: no-SMD solution, flex connections to allocate the sensor in	Driver for LEDs: SMD solution Optics: Suitable foils directly on dies (to	or mono-polycrystalline solution (semirigid)
proper site	improve contrast a black shield with	Charging module: depending on
Antenna RF: rigid solution in reduced size (NORDIC transceiver or MICREL receiver)	holes in correspondence of each LED for info panels) + metal layer on the back	battery stack; PV cells;
m-controller: SMD solution	Processes: printing for wiring; FlipChip,	Processes: standard manufacturing approaches for battery; standard
Driver for LEDs: SMD solution	RMPD® for die attaching	soldering or adhesive dispensing for components attachment
Processes : printing for wiring; standard soldering or adhesive dispensing for components attachment		

PRINCIPALI RISULTATI

- RISULTATI TECNICI
- TRASFERIMENTO TECNOLOGICO
- •CREAZIONE RETE DI IMPRESE E CENTRI DI RICERCA INTERNZIONALE
- •FORMAZIONE DEL PERSONALE DI R&D KN UN CONTESTO INTERNAZIONALE

OULU in Febbraio

